Homotopy invariants for ($)over-bar0, n via Koszul duality
成果类型:
Article
署名作者:
Dotsenko, Vladimir
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universites de Strasbourg Etablissements Associes; Universite de Strasbourg; Centre National de la Recherche Scientifique (CNRS); Universites de Strasbourg Etablissements Associes; Universite de Strasbourg
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-021-01081-x
发表日期:
2022
页码:
77-106
关键词:
moduli space
toric varieties
cyclic homology
pointed curves
stable curves
betti numbers
COHOMOLOGY
series
operads
ring
摘要:
We show that the integer cohomology rings of the moduli spaces of stable rational marked curves are Koszul. This answers an open question of Manin. Using the machinery of Koszul spaces developed by Berglund, we compute the rational homotopy Lie algebras of those spaces, and obtain some estimates for Betti numbers of their free loop spaces in case of torsion coefficients. We also prove and conjecture some generalisations of our main result.
来源URL: