Algebraic approximation and the decomposition theorem for Kahler Calabi-Yau varieties

成果类型:
Article
署名作者:
Bakker, Benjamin; Guenancia, Henri; Lehn, Christian
署名单位:
University of Illinois System; University of Illinois Chicago; University of Illinois Chicago Hospital; Universite de Toulouse; Universite Toulouse III - Paul Sabatier; Universite Federale Toulouse Midi-Pyrenees (ComUE); Institut National des Sciences Appliquees de Toulouse; Universite de Toulouse; Universite Toulouse III - Paul Sabatier; Centre National de la Recherche Scientifique (CNRS); Technische Universitat Chemnitz
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-022-01096-y
发表日期:
2022
页码:
1255-1308
关键词:
trivial canonical class 1st chern class differential forms singular spaces complex deformations extension quotients MANIFOLDS
摘要:
We extend the decomposition theorem for numerically K-trivial varieties with log terminal singularities to the Kahler setting. Along the way we prove that all such varieties admit a strong locally trivial algebraic approximation, thus completing the numerically K-trivial case of a conjecture of Campana and Peternell.
来源URL: