Viterbo conjecture for Zoll symmetric spaces
成果类型:
Article
署名作者:
Shelukhin, Egor
署名单位:
Universite de Montreal
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-022-01124-x
发表日期:
2022
页码:
321-373
关键词:
lagrangian submanifolds
spectral invariants
quasi-morphisms
fixed-points
symplectic hypersurfaces
hamiltonian-dynamics
Persistent Homology
mathematical-theory
holomorphic-curves
periodic-solutions
摘要:
We prove a conjecture of Viterbo from 2007 on the existence of a uniform bound on the Lagrangian spectral norm of Hamiltonian deformations of the zero section in unit cotangent disk bundles, for bases given by compact rank one symmetric spaces S-n,RPn,CPn,HPn,n >= 1. We discuss generalizations and give applications, in particular to C0 symplectic topology. Our key method consists in a quantitative deformation argument for Floer persistence modules that allows to excise a divisor.
来源URL: