Critical points of the Moser-Trudinger functional on closed surfaces

成果类型:
Article
署名作者:
De Marchis, Francesca; Malchiodi, Andrea; Martinazzi, Luca; Thizy, Pierre-Damien
署名单位:
Sapienza University Rome; Scuola Normale Superiore di Pisa; Centre National de la Recherche Scientifique (CNRS); Ecole Centrale de Lyon; Institut National des Sciences Appliquees de Lyon - INSA Lyon; Universite Claude Bernard Lyon 1; Universite Jean Monnet
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-022-01142-9
发表日期:
2022
页码:
1165-1248
关键词:
mean-field equation bubbling solutions existence result INEQUALITY profile
摘要:
Given a closed Riemann surface (Sigma, g(0)) and any positive weight f is an element of C-infinity(Sigma), we use a minmax scheme together with compactness, quantization results and with sharp energy estimates to prove the existence of positive critical points of the functional I-p,I-beta(u) = 2 - p/2 (p parallel to u parallel to(2)(H1)/2 beta) p/2-p - in integral(Sigma)(e(up-) - 1) f d v(g0), for every p is an element of (1, 2) and beta > 0, or for p = 1 and beta is an element of (0, infinity) \4 pi N. Letting p up arrow 2 we obtain positive critical points of the Moser-Trudinger functional F(u) := integral(Sigma)(e(u2) - 1)f dv(g0) constrained to epsilon(beta) := {v s.t. parallel to v parallel to(2)(H1) = beta} for any beta > 0.
来源URL: