G-uniform stability and Kahler-Einstein metrics on Fano varieties
成果类型:
Article
署名作者:
Li, Chi
署名单位:
Purdue University System; Purdue University; Rutgers University System; Rutgers University New Brunswick
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-021-01075-9
发表日期:
2022
页码:
661-744
关键词:
k-stability
energy
VALUATIONS
convexity
EXISTENCE
geometry
volumes
SPACES
bounds
摘要:
Let X be any Q-Fano variety and Aut(X)(0) be the identity component of the automorphism group of X. Let G be a connected reductive subgroup of Aut(X)(0) that contains a maximal torus of Aut(X)(0). We prove that X admits a Kahler-Einstein metric if and only if X is G-uniformly K-stable. This proves a version of Yau-Tian-Donaldson conjecture for arbitrary singular Fano varieties. A key new ingredient is a valuative criterion for G-uniform K-stability.
来源URL: