Purely magnetic tunneling effect in two dimensions
成果类型:
Article
署名作者:
Bonnaillie-Noel, Virginie; Herau, Frederic; Raymond, Nicolas
署名单位:
Centre National de la Recherche Scientifique (CNRS); Universite PSL; Ecole Normale Superieure (ENS); Centre National de la Recherche Scientifique (CNRS); Nantes Universite; Universite d'Angers
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-021-01073-x
发表日期:
2022
页码:
745-793
关键词:
low-lying eigenvalues
semi-classical limit
multiple wells
semiclassical analysis
schrodinger-operator
mechanics
摘要:
The magnetic Schrodinger operator, with Neumann boundary condition, on a smooth, bounded, and simply connected domain Omega of the Euclidean plane is considered in the semiclassical limit. When Omega has a symmetry axis, the semiclassical splitting of the first two eigenvalues is analyzed. The first explicit tunneling formula in a pure magnetic field is established. The analysis is based on a pseudo-differential reduction to the boundary and the proof of the first known optimal purely magnetic Agmon estimates.
来源URL: