Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices
成果类型:
Article; Early Access
署名作者:
Isenrich, Claudio Llosa; Py, Pierre
署名单位:
Helmholtz Association; Karlsruhe Institute of Technology; Universites de Strasbourg Etablissements Associes; Universite de Strasbourg; Centre National de la Recherche Scientifique (CNRS); Universites de Strasbourg Etablissements Associes; Universite de Strasbourg; Communaute Universite Grenoble Alpes; Universite Grenoble Alpes (UGA); Centre National de la Recherche Scientifique (CNRS)
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-023-01223-3
发表日期:
2023
关键词:
numbers
forms
摘要:
We prove that in a cocompact complex hyperbolic arithmetic lattice Gamma < PU(m, 1) of the simplest type, deep enough finite index subgroups admit plenty of homomorphisms to Z with kernel of type Fm-1 but not of type F-m. This provides many finitely presented non-hyperbolic subgroups of hyperbolic groups and answers an old question of Brady. Our method also yields a proof of a special case of Singer's conjecture for aspherical Kahler manifolds.