Gabor frames for rational functions
成果类型:
Article
署名作者:
Belov, Yurii; Kulikov, Aleksei; Lyubarskii, Yurii
署名单位:
Norwegian University of Science & Technology (NTNU)
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-022-01151-8
发表日期:
2023
页码:
431-466
关键词:
weyl-heisenberg frames
density theorems
interpolation
摘要:
We study the frame properties of the Gabor systems G(g; alpha, beta) := {e(2 pi i beta mx) g(x - an)} m,n is an element of Z. In particular, we prove that forHerglotzwindows g such systems always form a frame for L-2(R) if alpha, beta > 0, alpha beta <= 1. For general rationalwindows g is an element of L-2(R) we prove that G(g; alpha, beta) is a frame for L-2(R) if 0 < alpha, beta, alpha beta < 1, alpha beta is not an element of Q and (g) over bar(xi) not equal 0, xi > 0, thus confirming Daubechies conjecture for this class of functions. We also discuss some related questions, in particular sampling in shift-invariant subspaces of L-2(R).
来源URL: