Quasicircles and quasiperiodic surfaces in pseudo-hyperbolic spaces
成果类型:
Article
署名作者:
Labourie, Francois; Toulisse, Jeremy
署名单位:
Universite Cote d'Azur; Centre National de la Recherche Scientifique (CNRS)
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-023-01182-9
发表日期:
2023
页码:
81-168
关键词:
maximal representations
摘要:
We study in this paper quasiperiodic maximal surfaces in pseudo-hyperbolic spaces and show that they are characterised by a curvature condition, Gromov hyperbolicity or conformal hyperbolicity. We show that the limit curves of these surfaces in the Einstein Universe admits a canonical quasisymmetric parametrisation, while conversely every quasisymmetric curve in the Einstein Universe bounds a quasiperiodic surface in such a way that the quasisymmetric parametrisation is a continuous extension of the uniformisation; we give applications of these results to asymptotically hyperbolic surfaces, rigidity of Anosov representations and a version of the universal Teichmuller space.
来源URL: