Mean curvature flow with generic initial data
成果类型:
Article
署名作者:
Chodosh, Otis; Choi, Kyeongsu; Mantoulidis, Christos; Schulze, Felix
署名单位:
Stanford University; Korea Institute for Advanced Study (KIAS); Rice University; University of Warwick
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01258-0
发表日期:
2024
页码:
121-220
关键词:
convex ancient solutions
strong maximum principle
closed hypersurfaces
ricci flow
compact solutions
self-shrinkers
SINGULAR SET
level sets
uniqueness
entropy
摘要:
We show that the mean curvature flow of generic closed surfaces in R 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}<^>{3}$\end{document} avoids asymptotically conical and non-spherical compact singularities. We also show that the mean curvature flow of generic closed low-entropy hypersurfaces in R 4 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}<^>{4}$\end{document} is smooth until it disappears in a round point. The main technical ingredient is a long-time existence and uniqueness result for ancient mean curvature flows that lie on one side of asymptotically conical or compact shrinking solitons.