Trace formulas and inverse spectral theory for generalized indefinite strings

成果类型:
Article
署名作者:
Eckhardt, Jonathan; Kostenko, Aleksey
署名单位:
Loughborough University; University of Ljubljana; University of Vienna; Technische Universitat Wien
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01287-9
发表日期:
2024
页码:
391-502
关键词:
GLOBAL CONSERVATIVE SOLUTIONS CAMASSA-HOLM EQUATION KORTEWEG-DE-VRIES ABSOLUTELY CONTINUOUS-SPECTRUM SHALLOW-WATER EQUATION SUM-RULES SCHRODINGER-OPERATORS ISOSPECTRAL PROBLEM WEAK SOLUTIONS SCATTERING
摘要:
Generalized indefinite strings provide a canonical model for self-adjoint operators with simple spectrum (other classical models are Jacobi matrices, Krein strings and 2x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\times 2$\end{document} canonical systems). We prove a number of Szeg & odblac;-type theorems for generalized indefinite strings and related spectral problems (including Krein strings, canonical systems and Dirac operators). More specifically, for several classes of coefficients (that can be regarded as Hilbert-Schmidt perturbations of model problems), we provide a complete characterization of the corresponding set of spectral measures. In particular, our results also apply to the isospectral Lax operator for the conservative Camassa-Holm flow and allow us to establish existence of global weak solutions with various step-like initial conditions of low regularity via the inverse spectral transform.