Monoidal categorification and quantum affine algebras II
成果类型:
Article
署名作者:
Kashiwara, Masaki; Kim, Myungho; Oh, Se-jin; Park, Euiyong
署名单位:
Kyoto University; Korea Institute for Advanced Study (KIAS); Kyung Hee University; Sungkyunkwan University (SKKU); University of Seoul
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01249-1
发表日期:
2024
页码:
837-924
关键词:
QUIVER HECKE ALGEBRAS
CLUSTER ALGEBRAS
R-MATRICES
Q-CHARACTERS
T-SYSTEMS
REPRESENTATION
MODULES
PERIODICITIES
CATEGORIES
VARIETIES
摘要:
We introduce a new family of real simple modules over the quantum affine algebras, called the affine determinantial modules, which contains the Kirillov-Reshetikhin (KR)-modules as a special subfamily, and then prove T-systems among them which generalize the T-systems among KR-modules and unipotent quantum minors in the quantum unipotent coordinate algebras simultaneously. We develop new combinatorial tools: admissible chains of i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i$\end{document}-boxes which produce commuting families of affine determinantial modules, and box moves which describe the T-system in a combinatorial way. Using these results, we prove that various module categories over the quantum affine algebras provide monoidal categorifications of cluster algebras. As special cases, Hernandez-Leclerc categories Cg0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathscr{C}_{{\mathfrak{g}}}<^>{0}$\end{document} and Cg-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathscr{C}_{{\mathfrak{g}}}<^>{-}$\end{document} provide monoidal categorifications of the cluster algebras for an arbitrary quantum affine algebra.