Demazure crystals and the Schur positivity of Catalan functions
成果类型:
Article
署名作者:
Blasiak, Jonah; Morse, Jennifer; Pun, Anna
署名单位:
Drexel University; University of Virginia; City University of New York (CUNY) System; Baruch College (CUNY)
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01237-5
发表日期:
2024
页码:
483-547
关键词:
NONSYMMETRIC MACDONALD POLYNOMIALS
STANDARD MONOMIAL THEORY
Q-ANALOG
GREEN POLYNOMIALS
LINE BUNDLES
REPRESENTATIONS
COHOMOLOGY
VARIETIES
THEOREM
SINGULARITIES
摘要:
Catalan functions, the graded Euler characteristics of certain vector bundles on the flag variety, are a rich class of symmetric functions which include k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k$\end{document}-Schur functions and parabolic Hall-Littlewood polynomials. We prove that Catalan functions indexed by partition weight are the characters of Uq(sll)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U_{q}(\widehat{\mathfrak{sl}}_{\ell })$\end{document}-generalized Demazure crystals as studied by Lakshmibai-Littelmann-Magyar and Naoi. We obtain Schur positive formulas for these functions, settling conjectures of Chen-Haiman and Shimozono-Weyman. Our approach more generally gives key positive formulas for graded Euler characteristics of certain vector bundles on Schubert varieties by matching them to characters of generalized Demazure crystals.