Stochastic quantisation of Yang-Mills-Higgs in 3D
成果类型:
Article
署名作者:
Chandra, Ajay; Chevyrev, Ilya; Hairer, Martin; Shen, Hao
署名单位:
Imperial College London; University of Edinburgh; Swiss Federal Institutes of Technology Domain; Ecole Polytechnique Federale de Lausanne; University of Wisconsin System; University of Wisconsin Madison
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01264-2
发表日期:
2024
页码:
541-696
关键词:
LATTICE GAUGE-THEORY
CONSTRUCTION
CONVERGENCE
FIELDS
RENORMALIZATION
MODEL
EXISTENCE
FLOW
摘要:
We define a state space and a Markov process associated to the stochastic quantisation equation of Yang-Mills-Higgs (YMH) theories. The state space S \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{S}$\end{document} is a nonlinear metric space of distributions, elements of which can be used as initial conditions for the (deterministic and stochastic) YMH flow with good continuity properties. Using gauge covariance of the deterministic YMH flow, we extend gauge equivalence similar to to S \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{S}$\end{document} and thus define a quotient space of gauge orbits O \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak {O}$\end{document} . We use the theory of regularity structures to prove local in time solutions to the renormalised stochastic YMH flow. Moreover, by leveraging symmetry arguments in the small noise limit, we show that there is a unique choice of renormalisation counterterms such that these solutions are gauge covariant in law. This allows us to define a canonical Markov process on O \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak {O}$\end{document} (up to a potential finite time blow-up) associated to the stochastic YMH flow.