Persistence of heterodimensional cycles

成果类型:
Article
署名作者:
Li, Dongchen; Turaev, Dmitry
署名单位:
Imperial College London
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01255-3
发表日期:
2024
页码:
1413-1504
关键词:
periodic perturbations nonhyperbolic dynamics homoclinic tangencies global view fast growth systems diffeomorphisms abundance dimension EXISTENCE
摘要:
A heterodimensional cycle is an invariant set of a dynamical system consisting of two hyperbolic periodic orbits with different dimensions of their unstable manifolds and a pair of orbits that connect them. For systems which are at least C 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C<^>{2}$\end{document} , we show that bifurcations of a coindex-1 heterodimensional cycle within a generic 2-parameter family create robust heterodimensional dynamics, i.e., a pair of non-trivial hyperbolic basic sets with different numbers of positive Lyapunov exponents, such that the unstable manifold of each of the sets intersects the stable manifold of the second set and these intersections persist for an open set of parameter values. We also give a solution to the so-called local stabilization problem of coindex-1 heterodimensional cycles in any regularity class r = 2 , horizontal ellipsis , infinity , omega \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r=2,\ldots ,\infty ,\omega $\end{document} . The results are based on the observation that arithmetic properties of moduli of topological conjugacy of systems with heterodimensional cycles determine the emergence of Bonatti-Diaz blenders.
来源URL: