Stability of the Faber-Krahn inequality for the short-time Fourier transform
成果类型:
Article
署名作者:
Gomez, Jaime; Guerra, Andre; Ramos, Joao P. G.; Tilli, Paolo
署名单位:
Swiss Federal Institutes of Technology Domain; Ecole Polytechnique Federale de Lausanne; Swiss Federal Institutes of Technology Domain; ETH Zurich; Polytechnic University of Turin
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01248-2
发表日期:
2024
页码:
779-836
关键词:
摘要:
We prove a sharp quantitative version of the Faber-Krahn inequality for the short-time Fourier transform (STFT). To do so, we consider a deficit delta(f;omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta (f;\Omega )$\end{document} which measures by how much the STFT of a function f is an element of L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\in L<^>{2}(\mathbb{R})$\end{document} fails to be optimally concentrated on an arbitrary set omega subset of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega \subset \mathbb{R}<^>{2}$\end{document} of positive, finite measure. We then show that an optimal power of the deficit delta(f;omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta (f;\Omega )$\end{document} controls both the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L<^>{2}$\end{document}-distance of f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f$\end{document} to an appropriate class of Gaussians and the distance of omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega $\end{document} to a ball, through the Fraenkel asymmetry of omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega $\end{document}. Our proof is completely quantitative and hence all constants are explicit. We also establish suitable generalizations of this result in the higher-dimensional context.
来源URL: