Uniform negative immersions and the coherence of one-relator groups
成果类型:
Article
署名作者:
Louder, Larsen; Wilton, Henry
署名单位:
University of London; University College London; University of Cambridge
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01246-4
发表日期:
2024
页码:
673-712
关键词:
SECTIONAL CURVATURE
HYPERBOLIC GROUPS
RIGIDITY
SURFACES
摘要:
Previously, the authors proved that the presentation complex of a one-relator group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G$\end{document} satisfies a geometric condition called negative immersions if every two-generator, one-relator subgroup of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G$\end{document} is free. Here, we prove that one-relator groups with negative immersions are coherent, answering a question of Baumslag in this case. Other strong constraints on the finitely generated subgroups also follow such as, for example, the co-Hopf property. The main new theorem strengthens negative immersions to uniform negative immersions, using a rationality theorem proved with linear-programming techniques.
来源URL: