Hamiltonian Floer theory on surfaces: linking, positively transverse foliations and spectral invariants

成果类型:
Article
署名作者:
Connery-Grigg, Dustin
署名单位:
Sorbonne Universite
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01274-0
发表日期:
2024
页码:
1377-1468
关键词:
pseudo-holomorphic-curves pseudoholomorphic curves symplectisations Orbits
摘要:
We develop connections between the qualitative dynamics of Hamiltonian isotopies on a surface Sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Sigma $\end{document} and their chain-level Floer theory using ideas drawn from Hofer-Wysocki-Zehnder's theory of finite energy foliations. We associate to every collection of capped 1-periodic orbits which is 'maximally unlinked relative the Morse range' a singular foliation on S1x Sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S<^>{1} \times \Sigma $\end{document} which is positively transverse to the vector field partial derivative t circle plus XH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\partial _{t} \oplus X<^>{H}$\end{document} and which is assembled in a straight-forward way from the relevant Floer moduli spaces. Additionally, we provide a purely topological characterization of those Floer chains which both represent the fundamental class in CF & lowast;(H,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$CF_{*}(H,J)$\end{document}, and which lie in the image of some chain-level PSS map. This leads to the definition of a novel family of spectral invariants which share many of the same formal properties as the Oh-Schwarz spectral invariants, and we compute the novel spectral invariant associated to the fundamental class in entirely dynamical terms. This significantly extends a project initiated by Humili & egrave;re-Le Roux-Seyfaddini in (Humili & egrave;re et al. in Geom. Topol. 20(4):2253-2334, 2016).
来源URL: