Virasoro constraints for moduli of sheaves and vertex algebras
成果类型:
Article
署名作者:
Bojko, Arkadij; Lim, Woonam; Moreira, Miguel
署名单位:
Swiss Federal Institutes of Technology Domain; ETH Zurich
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01245-5
发表日期:
2024
页码:
387-476
关键词:
donaldson-thomas theory
gromov-witten theory
topological k-theory
abelian categories
configurations
COHOMOLOGY
INVARIANTS
SPACES
摘要:
In enumerative geometry, Virasoro constraints were first conjectured in Gromov-Witten theory with many new recent developments in the sheaf theoretic context. In this paper, we rephrase the sheaf theoretic Virasoro constraints in terms of primary states coming from a natural conformal vector in Joyce's vertex algebra. This shows that Virasoro constraints are preserved under wall-crossing. As an application, we prove the conjectural Virasoro constraints for moduli spaces of torsion-free sheaves on any curve and on surfaces with only (p,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,p)$\end{document} cohomology classes by reducing the statements to the rank 1 case.
来源URL: