Product structure and regularity theorem for totally nonnegative flag varieties

成果类型:
Article
署名作者:
Bao, Huanchen; He, Xuhua
署名单位:
National University of Singapore; University of Hong Kong
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01256-2
发表日期:
2024
页码:
1-47
关键词:
part Positivity MANIFOLDS cells g/p
摘要:
The totally nonnegative flag variety was introduced by Lusztig. It has enriched combinatorial, geometric, and Lie-theoretic structures. In this paper, we introduce a (new) J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J$\end{document} -total positivity on the full flag variety of an arbitrary Kac-Moody group, generalizing the (ordinary) total positivity.We show that the J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J$\end{document} -totally nonnegative flag variety has a cellular decomposition into totally positive J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J$\end{document} -Richardson varieties. Moreover, each totally positive J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J$\end{document} -Richardson variety admits a favorable decomposition, called a product structure. Combined with the generalized Poincare conjecture, we prove that the closure of each totally positive J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J$\end{document} -Richardson variety is a regular CW complex homeomorphic to a closed ball. Moreover, the J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J$\end{document} -total positivity on the full flag provides a model for the (ordinary) totally nonnegative partial flag variety. As a consequence, we prove that the closure of each (ordinary) totally positive Richardson variety is a regular CW complex homeomorphic to a closed ball, confirming conjectures of Galashin, Karp and Lam in (Adv. Math. 351:614-620, 2019). We also show that the link of the totally nonnegative part of U - \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U<^>{-}$\end{document} for any Kac-Moody group forms a regular CW complex. This generalizes the result of Hersh (Invent. Math. 197(1):57-114, 2014) for reductive groups.
来源URL: