Finite quotients of 3-manifold groups

成果类型:
Article
署名作者:
Sawin, Will; Wood, Melanie Matchett
署名单位:
Princeton University; Harvard University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01262-4
发表日期:
2024
页码:
349-440
关键词:
heuristics conjecture
摘要:
For G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G$\end{document} and H1,& mldr;,Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{1},\dots , H_{n}$\end{document} finite groups, does there exist a 3-manifold group with G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G$\end{document} as a quotient but no Hi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{i}$\end{document} as a quotient? We answer all such questions in terms of the group cohomology of finite groups. We prove non-existence with topological results generalizing the theory of semicharacteristics. To prove existence of 3-manifolds with certain finite quotients but not others, we use a probabilistic method, by first proving a formula for the distribution of the (profinite completion of) the fundamental group of a random 3-manifold in the Dunfield-Thurston model of random Heegaard splittings as the genus goes to infinity. We believe this is the first construction of a new distribution of random groups from its moments.
来源URL: