Mean curvature flow from conical singularities

成果类型:
Article
署名作者:
Chodosh, Otis; Daniels-Holgate, J. M.; Schulze, Felix
署名单位:
Stanford University; Hebrew University of Jerusalem; University of Warwick
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01296-8
发表日期:
2024
页码:
1041-1066
关键词:
uniqueness EXISTENCE SURFACES BEHAVIOR
摘要:
We prove Ilmanen's resolution of point singularities conjecture by establishing short-time smoothness of the level set flow of a smooth hypersurface with isolated conical singularities. This shows how the mean curvature flow evolves through asymptotically conical singularities. Precisely, we prove that the level set flow of a smooth hypersurface Mn subset of Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M<^>{n}\subset \mathbb{R}<^>{n+1}$\end{document}, 2 <= n <= 6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\leq n\leq 6$\end{document}, with an isolated conical singularity is modeled on the level set flow of the cone. In particular, the flow fattens (instantaneously) if and only if the level set flow of the cone fattens.
来源URL: