The Tits alternative for the automorphism group of a free product

成果类型:
Article
署名作者:
Horbez, Camille
署名单位:
Centre National de la Recherche Scientifique (CNRS); Universite Paris Saclay
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-025-01329-w
发表日期:
2025
页码:
869-901
关键词:
algebraic properties solvable subgroups HYPERBOLIC GROUPS outer-space BOUNDARY out(f-n) graph DYNAMICS trees
摘要:
Let G=G1 & lowast;& mldr;& lowast;Gk & lowast;F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G=G_{1}\ast \dots \ast G_{k}\ast F$\end{document} be a countable group which splits as a free product, where all groups Gi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G_{i}$\end{document} are freely indecomposable and not isomorphic to & Zopf;, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F$\end{document} is a finitely generated free group. If for all i is an element of{1,& mldr;,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i\in \{1,\dots ,k\}$\end{document}, both Gi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G_{i}$\end{document} and its outer automorphism group Out(Gi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{Out}(G_{i})$\end{document} satisfy the Tits alternative, then Out(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text{Out}(G)$\end{document} satisfies the Tits alternative. As an application, we prove that the Tits alternative holds for outer automorphism groups of right-angled Artin groups, and of torsion-free groups that are hyperbolic relative to a finite family of virtually polycyclic groups.