The D-equivalence conjecture for hyper-Kähler varieties via hyperholomorphic bundles

成果类型:
Article
署名作者:
Maulik, Davesh; Shen, Junliang; Yin, Qizheng; Zhang, Ruxuan
署名单位:
Massachusetts Institute of Technology (MIT); Yale University; Peking University; Fudan University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-025-01339-8
发表日期:
2025
页码:
309-324
关键词:
mori cones kahler flops
摘要:
We show that birational hyper-K & auml;hler varieties of K3[n]-type are derived equivalent, establishing the D-equivalence conjecture in these cases. The Fourier-Mukai kernels of our derived equivalences are constructed from projectively hyperholomorphic bundles, following ideas of Markman. Our method also proves a stronger version of the D-equivalence conjecture for hyper-K & auml;hler varieties of K3[n]-type with Brauer classes.