The amplituhedron BCFW triangulation
成果类型:
Article
署名作者:
Even-Zohar, Chaim; Lakrec, Tsviqa; Tessler, Ran J.
署名单位:
Technion Israel Institute of Technology; University of Zurich; Weizmann Institute of Science
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-025-01316-1
发表日期:
2025
页码:
1009-1138
关键词:
cells
摘要:
The amplituhedron An,k,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}_{n,k,4}$\end{document} is a geometric object, introduced by Arkani-Hamed and Trnka (2013) in the study of scattering amplitudes in quantum field theories. They conjecture that An,k,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}_{n,k,4}$\end{document} admits a decomposition into images of BCFW positroid cells, arising from the Britto-Cachazo-Feng-Witten recurrence (2005). We prove that this conjecture is true.