Generalizing Lusztig's total positivity

成果类型:
Article
署名作者:
Guichard, Olivier; Wienhard, Anna
署名单位:
Universites de Strasbourg Etablissements Associes; Universite de Strasbourg; Max Planck Society
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01303-y
发表日期:
2025
页码:
707-799
关键词:
group-representations surface groups SPACES
摘要:
We introduce the notion of Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Theta $\end{document}-positivity in real semisimple Lie groups. This notion at the same time generalizes Lusztig's total positivity in split real Lie groups and invariant orders in Lie groups of Hermitian type. We show that there are four families of simple Lie groups which admit a positive structure relative to a subset Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Theta$\end{document} of simple roots, and investigate fundamental properties of Theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Theta $\end{document}-positivity. We define and describe the positive and nonnegative unipotent semigroups and show that they give rise to a notion of positive n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}-tuples in flag varieties.