On Cheeger constants of hyperbolic surfaces

成果类型:
Article
署名作者:
Budzinski, Thomas; Curien, Nicolas; Petri, Bram
署名单位:
Centre National de la Recherche Scientifique (CNRS); Ecole Normale Superieure de Lyon (ENS de LYON); Universite Paris Saclay; Sorbonne Universite; Centre National de la Recherche Scientifique (CNRS); Universite Paris Cite; Sorbonne Universite; Institut Universitaire de France
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-025-01361-w
发表日期:
2025
页码:
511-530
关键词:
riemann EIGENVALUE
摘要:
It is a well-known result due to Bollob & aacute;s that the maximal Cheeger constant of large d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d$\end{document}-regular graphs cannot be close to the Cheeger constant of the d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d$\end{document}-regular tree. We prove analogously that the Cheeger constant of closed hyperbolic surfaces of large genus is bounded from above by 2/pi approximate to 0.63\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2/\pi \approx 0.63$\end{document}... which is strictly less than the Cheeger constant of the hyperbolic plane. The proof uses a random construction based on a Poisson-Voronoi tessellation of the surface with a vanishing intensity.