Non-classifiability of ergodic flows up to time change
成果类型:
Article
署名作者:
Gerber, Marlies; Kunde, Philipp
署名单位:
Indiana University System; Indiana University Bloomington; Jagiellonian University; Oregon State University
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-024-01312-x
发表日期:
2025
页码:
527-619
关键词:
uncountable family
operator methods
EQUIVALENCE
INVARIANTS
摘要:
A time change of a flow {Tt}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{T_{t}\}$\end{document}, t is an element of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${t\in \mathbb{R}}$\end{document}, is a reparametrization of the orbits of the flow such that each orbit is mapped to itself by an orientation-preserving homeomorphism of the parameter space. If a flow {St}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{S_{t}\}$\end{document} is isomorphic to a flow obtained by a reparametrization of a flow {Tt}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{T_{t}\}$\end{document}, then we say that {St}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{S_{t}\}$\end{document} and {Tt}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{T_{t}\}$\end{document} are isomorphic up to a time change. For ergodic flows {St}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{S_{t}\}$\end{document} and {Tt}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{T_{t}\}$\end{document}, Kakutani showed that this happens if and only if the two flows have Kakutani equivalent transformations as cross-sections. We prove that the Kakutani equivalence relation on ergodic invertible measure-preserving transformations of a standard non-atomic probability space is not a Borel set. This shows in a precise way that classification of ergodic transformations up to Kakutani equivalence is impossible. In particular, our results imply the non-classifiability of ergodic flows up to isomorphism after a time change. Moreover, we obtain anti-classification results under isomorphism for ergodic invertible transformations of a sigma-finite measure space. We also obtain anti-classification results under Kakutani equivalence for ergodic area-preserving smooth diffeomorphisms of the disk, annulus, and 2-torus, as well as real-analytic diffeomorphisms of the 2-torus. Our work generalizes the anti-classification results under isomorphism for ergodic transformations obtained by Foreman, Rudolph, and Weiss.