Stability under scaling in the local phases of multiplicative functions

成果类型:
Article
署名作者:
Walsh, Miguel N.
署名单位:
University of Buenos Aires; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); University of Buenos Aires
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-025-01343-y
发表日期:
2025
页码:
325-362
关键词:
摘要:
We introduce a strategy to tackle some known obstructions of current approaches to the Fourier uniformity conjecture. Assuming GRH, we then show the conjecture holds for intervals of length at least (logX)psi(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\log X)<^>{\psi (X)}$\end{document}, with psi(X)->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\psi (X) \rightarrow \infty $\end{document} an arbitrarily slowly growing function of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X$\end{document}. We expect the methods should adapt to nilsequences, thus also showing that the Generalised Riemann Hypothesis implies close to exponential growth in the sign patterns of the Liouville function.
来源URL: