Renormalization group and elliptic homogenization in high contrast

成果类型:
Article
署名作者:
Armstrong, Scott; Kuusi, Tuomo
署名单位:
New York University; University of Helsinki
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-025-01370-9
发表日期:
2025
页码:
895-1086
关键词:
quantitative homogenization Stochastic Homogenization percolation REGULARITY
摘要:
We prove a quantitative estimate for the homogenization length scale in terms of the ellipticity ratio Lambda/lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda /\lambda $\end{document} of the coefficient field. This upper bound applies to high-contrast elliptic equations exhibiting near-critical behavior. Specifically, we show, assuming a suitable decay of correlations, the length scale at which homogenization occurs is at most exp(Clog2(1+Lambda/lambda))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\exp (C \log <^>{2}(1+\Lambda /\lambda ))$\end{document}. The proof introduces the new concept of coarse-grained ellipticity, which measures the effective ellipticity ratio of the equation-and thus the strength of the disorder-after integrating out smaller scales. By a direct analytic argument, we derive an approximate differential inequality for this coarse-grained ellipticity as a function of the length scale. This approach may be viewed as a rigorous renormalization group argument and provides a quantitative framework for homogenization that can be iteratively applied across an arbitrary number of length scales.
来源URL: