Étale cohomology of algebraic varieties over Stein compacta
成果类型:
Article
署名作者:
Benoist, Olivier
署名单位:
Centre National de la Recherche Scientifique (CNRS)
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-025-01323-2
发表日期:
2025
页码:
497-536
关键词:
holomorphic convexity
levi problem
pythagoras numbers
analytic spaces
homotopy type
17th problem
rings
EXTENSIONS
schemes
THEOREM
摘要:
We prove a comparison theorem between the & eacute;tale cohomology of algebraic varieties over Stein compacta and the singular cohomology of their analytifications. We deduce that the field of meromorphic functions in a neighborhood of a connected Stein compact subset of a normal complex space of dimension n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document} has cohomological dimension n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}. As an application of Gal(C/R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm {Gal}(\mathbb{C}/\mathbb{R})$\end{document}-equivariant variants of these results, we obtain a quantitative version of Hilbert's 17th problem on compact subsets of real-analytic spaces.
来源URL: