Liouville property for groups and conformal dimension

成果类型:
Article
署名作者:
Bon, Nicolas Matte; Nekrashevych, Volodymyr; Zheng, Tianyi
署名单位:
Centre National de la Recherche Scientifique (CNRS); Ecole Centrale de Lyon; Institut National des Sciences Appliquees de Lyon - INSA Lyon; Universite Claude Bernard Lyon 1; Universite Jean Monnet; Texas A&M University System; Texas A&M University College Station; University of California System; University of California San Diego
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-025-01360-x
发表日期:
2025
页码:
461-510
关键词:
random-walks amenability GROWTH
摘要:
Conformal dimension is a fundamental invariant of metric spaces, particularly suited to the study of self-similar spaces, such as spaces with expanding self-coverings (e.g., Julia sets of complex rational functions). The dynamics of these systems are encoded by the associated iterated monodromy groups, which are examples of contracting self-similar groups. Their amenability is a well-known open question. We show that if G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G$\end{document} is an iterated monodromy group, and if the (Ahlfors-regular) conformal dimension of the underlying space is strictly less than 2, then every symmetric random walk with finite second moment on G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G$\end{document} has the Liouville property. As a corollary, every such group is amenable. This criterion applies to all examples of contracting groups previously known to be amenable, and to many new ones. In particular, it implies that for every sub-hyperbolic complex rational function f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f$\end{document} whose Julia set is not the whole sphere, the iterated monodromy group of f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f$\end{document} is amenable.
来源URL: