The shapes of complementary subsurfaces to simple closed hyperbolic multi-geodesics

成果类型:
Article
署名作者:
Arana-Herrera, Francisco; Calderon, Aaron
署名单位:
University System of Maryland; University of Maryland College Park; University of Chicago
刊物名称:
INVENTIONES MATHEMATICAE
ISSN/ISSBN:
0020-9910
DOI:
10.1007/s00222-025-01364-7
发表日期:
2025
页码:
571-626
关键词:
moduli space intersection theory riemann surfaces integer points geometry spheres CURVES number
摘要:
Cutting a hyperbolic surface X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X$\end{document} along a simple closed multi-geodesic results in a hyperbolic structure on the complementary subsurface. We study the distribution of the shapes of these subsurfaces in moduli space as boundary lengths go to infinity, showing that they equidistribute to the Kontsevich measure on a corresponding moduli space of metric ribbon graphs. In particular, random subsurfaces look like random ribbon graphs, a law which does not depend on the initial choice of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X$\end{document}. This result strengthens Mirzakhani's famous simple closed multi-geodesic counting theorems for hyperbolic surfaces.
来源URL: