UNIVERSAL POINTS IN THE ASYMPTOTIC SPECTRUM OF TENSORS
成果类型:
Article; Early Access
署名作者:
Christandl, Matthias; Vrana, Peter; Zuiddam, Jeroen
署名单位:
University of Copenhagen; Budapest University of Technology & Economics; University of Amsterdam
刊物名称:
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY
ISSN/ISSBN:
0894-0347
DOI:
10.1090/jams/996
发表日期:
2021
关键词:
kronecker coefficients
matrix
complexity
sunflowers
polytopes
rank
摘要:
1.1. The asymptotic restriction problem. We study the asymptotic restriction problem, following the pioneering work of Volker Strassen [57???60]. The asymptotic restriction problem is a problem about multilinear maps f : Fn1 x ?? ?? ?? x Fnk ??? F over an arbitrary field F. Letting (e1, ... , eni) be the standard basis of Fni, one may equivalently think of f as the k-tensor t E Fn1 ?? ?? ?? ?? ?? Fnk defined by t = ?? f (ea1, ..., eak)ea1 ?? ?????? ?? eak where ai ranges over {1,. .., nil. To state the asymptotic restriction problem we need the concepts of restriction and tensor product. Let f : Fn1 x ?? ?? ?? x Fnk ??? F and g : Fm1 x ?? ?? ?? x Fmk ??? F be multilinear maps. We say f restricts to g, and write f > g, if there are linear maps Ai : Fmi ??? Fni such that g = f o (A1, ... , Ak) where o denotes composition. We naturally define the tensor product f ??g as the multilinear map (Fn1 ??Fm1) x ?? ?? ?? x (Fnk ??Fmk) ??? F defined by (v1 ?? w1, ... , vk ?? wk) ?????? f (v1, ... , vk)g(w1, ... , wk). We say f restricts asymptotically to g, written f > g, if there is a sequence of natural numbers a(n) E
来源URL: