A multiple-imputation metropolis version of the EM algorithm

成果类型:
Article
署名作者:
Gaetan, C; Yao, JF
署名单位:
University of Padua; Universite de Rennes
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/90.3.643
发表日期:
2003
页码:
643654
关键词:
maximum-likelihood incomplete data CONVERGENCE
摘要:
In this paper we introduce a new stochastic variant of the EM algorithm. The algorithm combines the principle of multiple imputation and the theory of simulated annealing to deal with cases where the E-step and the M-step can be intractable or numerically inefficient.
来源URL: