Statistical inference for infinite-dimensional parameters via asymptotically pivotal estimating functions
成果类型:
Article
署名作者:
Goldwasser, MA; Tian, L; Wei, LJ
署名单位:
Harvard University; Harvard T.H. Chan School of Public Health
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/91.1.81
发表日期:
2004
页码:
8194
关键词:
regression-models
resampling method
bootstrap
摘要:
Suppose that a consistent estimator for an infinite-dimensional parameter can be readily obtained via a set of estimating functions which has a 'good' local linear approximation around the true value of the parameter. However, it may be difficult to estimate the variance function of this estimator well. We show that, if the set of estimating functions evaluated at the true parameter value is 'asymptotically pivotal', then the 'fiducial' distribution of the parameter can be used to approximate the distribution of this consistent estimator. We present three examples to illustrate that the corresponding inference for the parameter can be made via a simple simulation technique without involving complex, high-dimensional nonparametric density estimates.
来源URL: