A Haar-Fisz technique for locally stationary volatility estimation

成果类型:
Article
署名作者:
Fryzlewicz, Piotr; Sapatinas, Theofanis; Rao, Suhasini Subba
署名单位:
University of Bristol; University of Cyprus
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/93.3.687
发表日期:
2006
页码:
687704
关键词:
financial time-series nonstationarities spectrum models
摘要:
We consider a locally stationary model for financial log-returns whereby the returns are independent and the volatility is a piecewise-constant function with jumps of an unknown number and locations, defined on a compact interval to enable a meaningful estimation theory. We demonstrate that the model explains well the common characteristics of log-returns. We propose a new wavelet thresholding algorithm for volatility estimation in this model, in which Haar wavelets are combined with the variance-stabilising Fisz transform. The resulting volatility estimator is mean-square consistent with a near-parametric rate, does not require any pre-estimates, is rapidly computable and is easily implemented. We also discuss important variations on the choice of estimation parameters. We show that our approach both gives a very good fit to selected currency exchange datasets, and achieves accurate long- and short-term volatility forecasts in comparison to the GARCH(1, 1) and moving window techniques.