Spatially adaptive smoothing splines
成果类型:
Article
署名作者:
Pintore, A; Speckman, P; Holmes, CC
署名单位:
University of Oxford; University of Missouri System; University of Missouri Columbia
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/93.1.113
发表日期:
2006
页码:
113125
关键词:
bayesian confidence-intervals
摘要:
We use a reproducing kernel Hilbert space representation to derive the smoothing spline solution when the smoothness penalty is a function lambda(t) of the design space t, thereby allowing the model to adapt to various degrees of smoothness in the structure of the data. We propose a convenient form for the smoothness penalty function and discuss computational algorithms for automatic curve fitting using a generalised crossvalidation measure.