Tuning parameter selectors for the smoothly clipped absolute deviation method
成果类型:
Article
署名作者:
Wang, Hansheng; Li, Runze; Tsai, Chih-Ling
署名单位:
Peking University; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; University of California System; University of California Davis
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/asm053
发表日期:
2007
页码:
553568
关键词:
model selection
likelihood
摘要:
The penalized least squares approach with smoothly clipped absolute deviation penalty has been consistently demonstrated to be an attractive regression shrinkage and selection method. It not only automatically and consistently selects the important variables, but also produces estimators which are as efficient as the oracle estimator. However, these attractive features depend on appropriate choice of the tuning parameter. We show that the commonly used generalized crossvalidation cannot select the tuning parameter satisfactorily, with a nonignorable overfitting effect in the resulting model. In addition, we propose a BIC tuning parameter selector, which is shown to be able to identify the true model consistently. Simulation studies are presented to support theoretical findings, and an empirical example is given to illustrate its use in the Female Labor Supply data.