Incorporating prior probabilities into high-dimensional classifiers

成果类型:
Article
署名作者:
Hall, Peter; Xue, Jing-Hao
署名单位:
University of Melbourne; University of London; University College London
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/asp081
发表日期:
2010
页码:
3148
关键词:
gene-expression centroid classifier microarray data cancer ratios
摘要:
In standard parametric classifiers, or classifiers based on nonparametric methods but where there is an opportunity for estimating population densities, the prior probabilities of the respective populations play a key role. However, those probabilities are largely ignored in the construction of high-dimensional classifiers, partly because there are no likelihoods to be constructed or Bayes risks to be estimated. Nevertheless, including information about prior probabilities can reduce the overall error rate, particularly in cases where doing so is most important, i.e. when the classification problem is particularly challenging and error rates are not close to zero. In this paper we suggest a general approach to reducing error rate in this way, by using a method derived from Breiman's bagging idea. The potential improvements in performance are identified in theoretical and numerical work, the latter involving both applications to real data and simulations. The method is simple and explicit to apply, and does not involve choice of any tuning parameters.
来源URL: