Multinomial logit bias reduction via the Poisson log-linear model
成果类型:
Article
署名作者:
Kosmidis, Ioannis; Firth, David
署名单位:
University of London; University College London; University of Warwick
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/asr026
发表日期:
2011
页码:
755759
关键词:
logistic-regression
maximum-likelihood
摘要:
For the parameters of a multinomial logistic regression, it is shown how to obtain the bias-reducing penalized maximum likelihood estimator by using the equivalent Poisson log-linear model. The calculation needed is not simply an application of the Jeffreys prior penalty to the Poisson model. The development allows a simple and computationally efficient implementation of the reduced-bias estimator, using standard software for generalized linear models.