Smoothed nonparametric estimation for current status competing risks data

成果类型:
Article
署名作者:
Li, Chenxi; Fine, Jason P.
署名单位:
University of North Carolina; University of North Carolina Chapel Hill
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/ass053
发表日期:
2013
页码:
173187
关键词:
maximum-likelihood-estimation drug-users selection density bangkok cohort
摘要:
We study the nonparametric estimation of the cumulative incidence function and the cause-specific hazard function for current status data with competing risks via kernel smoothing. A smoothed naive nonparametric maximum likelihood estimator and a smoothed full nonparametric maximum likelihood estimator are shown to have pointwise asymptotic normality and faster convergence rates than the corresponding unsmoothed nonparametric likelihood estimators. Using the smoothed estimators and the plug-in principle, we can estimate the cause-specific hazard function, which has not been studied previously. We also propose semi-smoothed estimators of the cause-specific hazard as an alternative to the smoothed estimator and demonstrate that neither is uniformly more efficient than the other. Numerical studies show that a smoothed bootstrap method works well for selecting the bandwidths in the smoothed nonparametric estimation. The use of the estimators is exemplified by an application to cumulative incidence and hazard of subtype-specific HIV infection from a sero-prevalence study in injecting drug users in Thailand.