Posterior consistency in linear models under shrinkage priors
成果类型:
Article
署名作者:
Armagan, A.; Dunson, D. B.; Lee, J.; Bajwa, W. U.; Strawn, N.
署名单位:
SAS Institute Inc; Duke University; Seoul National University (SNU); Rutgers University System; Rutgers University New Brunswick; Duke University
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/ast028
发表日期:
2013
页码:
10111018
关键词:
selection
摘要:
We investigate the asymptotic behaviour of posterior distributions of regression coefficients in high-dimensional linear models as the number of dimensions grows with the number of observations. We show that the posterior distribution concentrates in neighbourhoods of the true parameter under simple sufficient conditions. These conditions hold under popular shrinkage priors given some sparsity assumptions.