Censored rank independence screening for high-dimensional survival data

成果类型:
Article
署名作者:
Song, Rui; Lu, Wenbin; Ma, Shuangge; Jeng, X. Jessie
署名单位:
North Carolina State University; Yale University
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/asu047
发表日期:
2014
页码:
799814
关键词:
GENERALIZED LINEAR-MODELS variable selection regression Lasso inequalities
摘要:
In modern statistical applications, the dimension of covariates can be much larger than the sample size. In the context of linear models, correlation screening (Fan & Lv, J. R. Statist. Soc. B, 70, 849-911, 2008) has been shown to reduce the dimension of such data effectively while achieving the sure screening property, i.e., all of the active variables can be retained with high probability. However, screening based on the Pearson correlation does not perform well when applied to contaminated covariates and/or censored outcomes. In this paper, we study censored rank independence screening of high-dimensional survival data. The proposed method is robust to predictors that contain outliers, works for a general class of survival models, and enjoys the sure screening property. Simulations and an analysis of real data demonstrate that the proposed method performs competitively on survival datasets of moderate size and high-dimensional predictors, even when these are contaminated.