Partial least squares for dependent data

成果类型:
Article
署名作者:
Singer, Marco; Krivobokova, Tatyana; Munk, Axel; De Groot, Bert
署名单位:
University of Gottingen; Max Planck Society
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/asw010
发表日期:
2016
页码:
351362
关键词:
regression proteins PLS chemometrics prediction matrices MOTIONS models
摘要:
We consider the partial least squares algorithm for dependent data and study the consequences of ignoring the dependence both theoretically and numerically. Ignoring nonstationary dependence structures can lead to inconsistent estimation, but a simple modification yields consistent estimation. A protein dynamics example illustrates the superior predictive power of the proposed method.
来源URL: