A goodness-of-fit test for structural nested mean models
成果类型:
Article
署名作者:
Yang, S.; Lok, J. J.
署名单位:
Harvard University; Harvard T.H. Chan School of Public Health
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/asw031
发表日期:
2016
页码:
734741
关键词:
sample properties
inference
noncompliance
survival
therapy
time
摘要:
Coarse structural nested mean models are tools for estimating treatment effects from longitudinal observational data with time-dependent confounding. There is, however, no guidance on how to specify the treatment effect model, and model misspecification can lead to bias. We derive a goodness-of-fit test based on modified over-identification restrictions tests for evaluating a treatment effect model, and show that our test is doubly robust in the sense that, with a correct treatment effect model, the test has the correct Type I error if either the treatment initiation model or a nuisance regression outcome model is correctly specified. In a simulation study, we show that the test has correct Type I error and can detect model misspecification. We use the test to study how the timing of antiretroviral treatment initiation after HIV infection predicts the effect of one year of treatment in HIV-positive patients with acute and early infection.
来源URL: