Simple, scalable and accurate posterior interval estimation
成果类型:
Article
署名作者:
Li, Cheng; Srivastava, Sanvesh; Dunson, David B.
署名单位:
National University of Singapore; University of Iowa; Duke University
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/asx033
发表日期:
2017
页码:
665680
关键词:
摘要:
Standard posterior sampling algorithms, such as Markov chain Monte Carlo procedures, face major challenges in scaling up to massive datasets. We propose a simple and general posterior interval estimation algorithm to rapidly and accurately estimate quantiles of the posterior distributions for one-dimensional functionals. Our algorithm runs Markov chain Monte Carlo in parallel for subsets of the data, and then averages quantiles estimated from each subset. We provide strong theoretical guarantees and show that the credible intervals from our algorithm asymptotically approximate those from the full posterior in the leading parametric order. Our algorithm has a better balance of accuracy and efficiency than its competitors across a variety of simulations and a real-data example.