On overfitting and post-selection uncertainty assessments

成果类型:
Article
署名作者:
Hong, L.; Kuffner, T. A.; Martin, R.
署名单位:
Robert Morris University; Washington University (WUSTL); North Carolina State University
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/asx083
发表日期:
2018
页码:
221224
关键词:
model
摘要:
In a regression context, when the relevant subset of explanatory variables is uncertain, it is common to use a data-driven model selection procedure. Classical linear model theory, applied naively to the selected submodel, may not be valid because it ignores the selected submodel's dependence on the data. We provide an explanation of this phenomenon, in terms of overfitting, for a class of model selection criteria.