Bootstrapping spectral statistics in high dimensions
成果类型:
Article
署名作者:
Lopes, Miles E.; Blandino, Andrew; Aue, Alexander
署名单位:
University of California System; University of California Davis
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/asz040
发表日期:
2019
页码:
781801
关键词:
sample covariance matrices
LIMIT-THEOREMS
eigenvalues
example
PCA
clt
摘要:
Statistics derived from the eigenvalues of sample covariance matrices are called spectral statistics, and they play a central role in multivariate testing. Although bootstrap methods are an established approach to approximating the laws of spectral statistics in low-dimensional problems, such methods are relatively unexplored in the high-dimensional setting. The aim of this article is to focus on linear spectral statistics as a class of prototypes for developing a new bootstrap in high dimensions, a method we refer to as the spectral bootstrap. In essence, the proposed method originates from the parametric bootstrap and is motivated by the fact that in high dimensions it is difficult to obtain a nonparametric approximation to the full data-generating distribution. From a practical standpoint, the method is easy to use and allows the user to circumvent the difficulties of complex asymptotic formulas for linear spectral statistics. In addition to proving the consistency of the proposed method, we present encouraging empirical results in a variety of settings. Lastly, and perhaps most interestingly, we show through simulations that the method can be applied successfully to statistics outside the class of linear spectral statistics, such as the largest sample eigenvalue and others.