Miscellanea Calibrating general posterior credible regions
成果类型:
Article
署名作者:
Syring, Nicholas; Martin, Ryan
署名单位:
University of Illinois System; University of Illinois Chicago; University of Illinois Chicago Hospital; North Carolina State University
刊物名称:
BIOMETRIKA
ISSN/ISSBN:
0006-3444
DOI:
10.1093/biomet/asy054
发表日期:
2019
页码:
479486
关键词:
bayesian-inference
gibbs posterior
likelihood
models
摘要:
Calibration of credible regions derived from under- or misspecified models is an important and challenging problem. In this paper, we introduce a scalar tuning parameter that controls the posterior distribution spread, and develop a Monte Carlo algorithm that sets this parameter so that the corresponding credible region achieves the nominal frequentist coverage probability.